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Electroencephalography (EEG) provides a non-invasive means to advancing our
understanding of the development and function of the brain. However, the majority
of the world’s population residing in low and middle income countries has historically
been limited from contributing to, and thereby benefiting from, such neurophysiological
research, due to lack of scalable validated methods of EEG data collection. In this
study, we establish a standard operating protocol to collect approximately 3 min
each of eyes-open and eyes-closed resting-state EEG data using a low-cost portable
EEG device in rural households through formative work in the community. We then
evaluate the acceptability of these EEG assessments to young children and feasibility
of administering them through non-specialist workers. Finally, we describe properties
of the EEG recordings obtained using this novel approach to EEG data collection. The
formative phase was conducted with 9 families which informed protocols for consenting,
child engagement strategies and data collection. The protocol was then implemented
on 1265 families. 977 children (Mean age = 38.8 months, SD = 0.9) and 1199 adults
(Mean age = 27.0 years, SD = 4) provided resting-state data for this study. 259 children
refused to wear the EEG cap or removed it, and 58 children refused the eyes-closed
recording session. Hardware or software issues were experienced during 30 and 25
recordings in eyes-open and eyes-closed conditions respectively. Disturbances during
the recording sessions were rare and included participants moving their heads, touching
the EEG headset with their hands, opening their eyes within the eyes-closed recording
session, and presence of loud sounds in the testing environment. Similar to findings
in laboratory-based studies from high-income settings, the percentage of recordings
which showed an alpha peak was higher in eyes-closed than eyes-open condition, with
the peak occurring most frequently in electrodes at O1 and O2 positions, and the mean
frequency of the alpha peak was found to be lower in children (8.43 Hz, SD = 1.73)
as compared to adults (10.71 Hz, SD = 3.96). We observed a deterioration in the EEG

Frontiers in Human Neuroscience | www.frontiersin.org 1 March 2022 | Volume 16 | Article 802764

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2022.802764
http://creativecommons.org/licenses/by/4.0/
mailto:supriya.bhavnani@sangath.in
https://doi.org/10.3389/fnhum.2022.802764
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2022.802764&domain=pdf&date_stamp=2022-03-21
https://www.frontiersin.org/articles/10.3389/fnhum.2022.802764/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-802764 March 15, 2022 Time: 18:16 # 2

Bhavnani et al. Portable EEG in Rural Communities

signal with prolonged device usage. This study demonstrates the acceptability, feasibility
and utility of conducting EEG research at scale in a rural low-resource community,
while highlighting its potential limitations, and offers the impetus needed to further refine
the methods and devices and validate such scalable methods to overcome existing
research inequity.

Keywords: resting-state EEG, preschool children, LMIC, EMOTIV, portable EEG

INTRODUCTION

Electroencephalography (EEG) is a non-invasive technology
designed to capture electrical signals from the brain at high
temporal resolution. It has contributed to our understanding of
brain development and function across the lifespan for decades.
EEG can be recorded while participants are in a resting-state
condition, either with their eyes closed or open, or while they are
performing specific tasks. A variety of metrics derived from EEG
traces obtained during these paradigms have been tested for their
ability to index cognitive and social development and function
in children and adults (Deary et al., 2010; Loo et al., 2016;
Anderson and Perone, 2018; Bhavnani et al., 2021). Evidence is
also beginning to emerge of the potential of EEG metrics to enable
early identification of children at risk for developmental disorders
(Bosl et al., 2011, 2018; Snyder et al., 2015; Gurau et al., 2017).

Historically though, most EEG research has been conducted
in highly controlled settings of laboratories based in high-income
settings, with little ethnic diversity amongst study participants
(Bhavnani et al., 2021). Given emerging evidence that some EEG
metrics might be sensitive to cultural and contextual differences
across global settings (Knyazev et al., 2012; Alahmadi et al.,
2016; Parameshwaran et al., 2021), it is critical to diversify
the population of participants from whom inferences on brain
development and function are drawn and ensure that low and
middle income countries (LAMIC), in which the majority of the
world’s population resides, are well represented in this important
field of research (Valdes-Sosa et al., 2021). Furthermore, these
populations are the most likely to benefit from such research,
since they reside in countries with a high prevalence of risk
factors that adversely impact the developing brain and have the
highest number of children with neurodevelopmental disorders
(Lu et al., 2016; Bitta et al., 2017), making it imperative to test
the generalizability of the evidence that has accumulated from
research in high-income settings.

Developmental EEG research studies have begun to emerge
from LAMIC such as Bangladesh, The Gambia and Malawi (Leal
Storrs, 2017; Jensen et al., 2019; Katus et al., 2019; Xie et al.,
2019; Neto et al., 2021). This has been possible, in part, because
research personnel in such settings have been trained to collect
EEG data. However, in order to achieve the vision of using EEG
at scale in global settings, neurophysiological research has to
reduce its dependence on prohibitively expensive equipment and
highly trained personnel such as technicians, Ph.D. students and
post-doctoral researchers. EEG data collection methods also need
to be amenable to being implemented in uncontrolled settings
such as community centers or even households. These advances
are crucial to harnessing the potential of this technology in

contributing to our understanding of the typical and atypical
brain toward improving the health of populations.

Encouragingly, low-cost and portable EEG devices are already
available in the market through companies such as EMOTIV1,
Cognionics2, and OpenBCI3. Most companies offer user-friendly
interfaces for ease of data collection, as well as services related to
cloud storage and computing of collected data, thereby reducing
the need for technical expertise at the site of data collection. The
time is ripe to test the potential of the portable version of EEG
technology to be taken to scale in low resource settings. Evidence
is beginning to accumulate on the feasibility and validity of using
portable EEG devices in research studies (Ekandem et al., 2012;
Badcock et al., 2013; De Vos and Debener, 2014; Lau-Zhu et al.,
2019). Most of this data has emerged from studies conducted
on adult participants, including studies from our group which
have demonstrated the utility of the EPOC device to collect data
from adults in remote rural settings in India (Parameshwaran
et al., 2021). However, to our knowledge, there are no published
reports demonstrating the utility of the EMOTIV EPOC device to
collect EEG data on a large population-based sample of preschool
children in low resource settings.

Therefore, the aims of this study were (a) to establish a
standard operating protocol to collect resting-state EEG data
using a low-cost portable EEG device in rural households
through formative work in the community, (b) to evaluate the
acceptability of conducting resting-state EEG assessments on 3-
year-old children, (c) to evaluate the feasibility of administering
these EEG assessments through non-specialist workers in a large
sample of children and adults, and (d) to describe properties of
the EEG recordings obtained using this novel approach to EEG
data collection.

MATERIALS AND METHODS

Study Site and Ethics
This work was nested within a larger follow-up study of the
participants of the SPRING (Sustainable Program Incorporating
Nutrition and Games) cluster randomized controlled trial,
conducted in 120 villages in Rewari district in rural Haryana,
India, when children turned 3 years of age. Rewari district is
predominantly agricultural (70% rural households) with some
industrial sectors (“National Family Health Survey” n.d.). While

1www.emotiv.com
2www.cgxsystems.com/
3openbci.com

Frontiers in Human Neuroscience | www.frontiersin.org 2 March 2022 | Volume 16 | Article 802764

http://www.emotiv.com
http://www.cgxsystems.com/
http://openbci.com
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-802764 March 15, 2022 Time: 18:16 # 3

Bhavnani et al. Portable EEG in Rural Communities

almost all households have electricity (98.6%) and improved
drinking water sources such as piped water or public taps (93.5%),
fewer have non-shared toilet facilities (69.7%) and use clean fuel
for cooking (39.1%) (“National Family Health Survey” n.d.). The
SPRING trial tested an intervention designed to optimize growth
and development in early childhood, and has been described
in detail elsewhere (registered with Clinical-Trials.gov, number
NCT02059863) (Lingam et al., 2014; Divan et al., 2015; Bhopal
et al., 2019a,b).

This study was conducted in accordance with the Declaration
of Helsinki. Parents provided written informed consent before
their own and their child’s participation in this study. The
study received approval from institutional review boards of the
Public Health Foundation of India (18 July 2018) and Sangath
(23 August 2018).

Field Personnel
In this study, EEG assessments were conducted by non-specialists
(henceforth referred to as “assessors”) in participants’ households
at a convenient date and time (Figure 1A). Assessors were
prioritized for recruitment if they had prior training and
experience working with young children and were from the same
community in which the study was being conducted. All eight
assessors had completed the equivalent of a postgraduate degree
and none had worked with EEG technology before.

Equipment
Electroencephalography was conducted using the wireless EPOC
device by EMOTIV connected to Microsoft Surface Pro 4 tablets.
It consists of 14 gold plated saline electrodes (sensors contained
felt inserts) positioned by the 10–20 International system at
AF3, AF4, F3, F4, F7, F8, FC5, FC6, T7, T8, P7, P8, O1, and
O2. The EEG headsets use CMS/DRL reference system (M1, a
ground reference point for measuring the voltage of the other
sensors and M2, a feed-forward reference point for reducing
electrical interference from external sources). The device has
a maximum sampling rate of 128 Hz along with digital notch
filters for line noise at 50 and 60Hz. The spectral range reliably
available for analysis is 0.2–45 Hz. Impedance at each electrode
is measured, color-coded and reported in real-time as “channel
contact quality” ranging from 0 to 4. The EPOC device has a 12-
h battery life, while the Microsoft Surface Pro 4 tablet battery
life lasts approximately 4–5 h. Since re-using felt sensors across
participants was not recommended for hygiene purposes, and
EMOTIV’s proprietary felt inserts were prohibitively expensive
for the scale of data collection planned in this study, they were
replaced with 1-cm long dental cotton roll pieces. Further, in
order to increase the acceptability of the EEG headset to 3-year-
old children, the device was decorated with stickers to make it
colorful and attractive (Figure 1B).

Criteria Guiding Selection of the EPOC Device
Prior Evidence
The EPOC device has been available for over a decade, and a
recent review has examined its use in research studies (Williams
et al., 2020). This review found that while most studies using the
EPOC headset have been conducted with adults, some groups

have begun exploring its potential for use with children over
the age of 5 years, including those with special needs such as
Autism (Askari et al., 2018) and Attention Deficit Hyperactivity
Disorder (ADHD) (Martínez et al., 2016; Mercado-Aguirre et al.,
2019). The utility of this device to collect EEG data and extract a
variety of metrics ranging from power across spectral frequency
bands such as alpha, beta and gamma in resting-state eyes open
condition (Askari et al., 2018), as well as while children are
engaged in a game targeting cognitive, attention and reasoning
skills (Martínez et al., 2016); and event-related potentials (ERPs)
elicited in response to auditory stimuli (Badcock et al., 2015;
Mercado-Aguirre et al., 2019) has already been demonstrated.

Hardware Design
We expected that the design of the headset in a fixed
configuration with all electrodes embedded within arms would
contribute to the ease with which it could be accurately placed
onto the head by non-specialists. Being saline sensors, it is
less messy and does not leave a residue in the hair. The long
battery-life of the headset would also make it possible to record
data from multiple households in a day, without the need for
access to electricity.

User-Friendly Software
The EMOTIV Pro data collection software can be used offline,
and we expected that its user-friendly interface would aid
non-specialists to collect EEG data. For example, the use of
colors to indicate channel quality greatly facilitated training
without the need to train on technical details of EEG signals
such as impedance.

Study Procedures
This study was conducted in two phases: (1) Formative phase
in which contextually relevant standard operating protocols to
conduct EEG research on children and adults in rural household
settings was established and (2) Implementation phase in which
the protocol established through formative work was assessed
through implementation on a large sample of children and adults.

Formative Phase
The formative phase was conducted with 9 families between May
and July 2018, who were recruited from four villages adjoining
the SPRING study area. The children in these households (3 girls
and 6 boys) were aged between 32 and 37 months. Every visit in
this phase included a field supervisor (KKS) accompanying an
assessor to make detailed observations to inform the following
components of the standard operating protocol: consenting,
engaging children in the EEG assessment, and data collection
(observations and learnings are summarized in Table 1).

Consenting
Field personnel observed a hesitancy amongst some families to
participate in the EEG component of the study. The following
strategies were thus incorporated into the consenting process
to facilitate families’ understanding of the EEG assessment and
associated hardware (see Table 1): (a) ensuring that all available
family members, including family elders like grandparents, were
listening to the description of the EEG component of the study,
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FIGURE 1 | (A) Example picture of testing in rural households. (B) EMOTIV EPOC decorated with stickers to make it attractive for children. (C) Screenshot of the
animated story showing the protagonist wearing a helmet, which was used to encourage children to wear the EEG headset.

(b) taking the EEG headset along at the time of consenting to
show it to families and allow them to hold and examine the
device, (c) showing small video clips of EEG assessments to
family members so they could visualize the process, and (d)
leaving a leaflet containing a collage of images illustrating the
EEG assessment (see Supplementary Figure 1) in the household
so absent family members, such as fathers who were usually away
at work, could be informed of what the assessment would entail.

Child Engagement Strategies
A story, in the form of an animated video which is part of
a cognitive assessment tool named Developmental Assessment
on an E-Platform (DEEP) (Bhavnani et al., 2019), was used to
encourage children to wear the EEG headset. In this video, the
protagonist (a child) has to embark on a journey to help the
moon reunite with its friends, the planets, and wears a helmet-
like headset before starting the journey (see video snapshot in
Figure 1C). Assessors were trained to pause the video at this
point, and encourage the participating child to also wear a
headset like the character in the video in order to continue on

their journey through the cognitive assessment game. Modes of
encouragement also included the assessors wearing the headset
themselves, or requesting the mother to do so briefly.

Data Collection Protocol
Unlike ERP studies, advantages of collecting data in resting-
state include (a) capturing the default state of the brain and
not stimulus triggered events, (b) the short duration of the
recording, and (c) a lack of the requirement to synchronize across
multiple devices typically used for stimulus presentation and
data collection. Importantly, metrics derived from resting-state
EEG signals have widely been demonstrated to index healthy
brain development in cognitive, language, and socio-emotional
domains in children and brain function in adults (Khanna et al.,
2015; Anderson and Perone, 2018; Parameshwaran et al., 2019;
Bhavnani et al., 2021). Thus a decision was taken to collect
resting-state EEG data from adults and children with their eyes-
closed and eyes-open. Additionally, EEG data was also collected
while children engaged in the DEEP cognitive assessment tool.
However, other than its inclusion in the tally of cumulative

Frontiers in Human Neuroscience | www.frontiersin.org 4 March 2022 | Volume 16 | Article 802764

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-802764 March 15, 2022 Time: 18:16 # 5

Bhavnani et al. Portable EEG in Rural Communities

TABLE 1 | Standard operating procedures informed by the formative phase of this study.

Study component Challenges Solutions

Consenting Hesitancy due to unfamiliarity with EEG Showing the EEG equipment to families and allowing them to hold and examine
the device

Showing small video clips of sample EEG assessments to family members

Hesitancy in the mother to provide
consent before consulting with other
family members, especially the father

Ensuring that all available family members were involved in the consent process

Leaving a collage of images illustrating the EEG assessment (see
Supplementary Figure 1) in the household so absent family members could
be informed about the assessment

Child engagement
strategies

Children were intimidated by the
headset

The EMOTIV EPOC device was decorated with stickers to make it colorful and
attractive (see Figure 1B)

Children hesitated to wear the headset The animated video on the DEEP cognitive assessment tool (Bhavnani et al.,
2019) contained a scene in which the protagonist (the child) wears a helmet-like
headset before starting an exciting journey (see video snapshot in Figure 1B).
Assessors played the video to engage the child, and paused it when the
protagonist wore the helmet to encourage the participating child to wear a
headset like the character in the video. They were told they could continue on
their journey through the cognitive assessment game after wearing the headset

The assessors wore the headset themselves, or requested the mother to do so
briefly

Data collection
protocols

Children were reluctant to close their
eyes

Children were allowed to cover their eyes using their hands, or the caregiver or
assessor could do so for them

Due to the uncontrolled nature of the
setting, disturbances were anticipated
during data collection

Data collection was conducted in a separate room with only the primary
caregiver(s) and the child in the household to minimize disturbances

Assessors were trained to record the time stamps of any disturbance that led to
visible changes in the EEG signal recording (example trace in Figure 2)

number of EEG recordings across the data collection period
(see results), this dataset is not discussed further here. Separate
recordings were made for each of these conditions.

Since data was being collected in uncontrolled low-income
household settings with chances of disturbance and interruption
by other family members, the importance of testing participants
in a relatively quiet part of the house and if available, in a
separate room altogether, in order to avoid them being distracted
during the assessment, was emphasized. In addition, the time
stamps of any disturbance that visibly made the EEG recording
fluctuate dramatically (example trace in Figure 2) was recorded
by the assessor. It was observed that children were often reluctant
to close their eyes, or they opened them after a few seconds.
The protocol thus included the option for children to cover
their eyes using their hands, or for the caregiver or assessor
to do so for them.

Implementation Phase
The protocol developed in the formative phase (see column 3 in
Table 1) was implemented in this phase. 1443 families from the
SPRING study were approached to participate in this phase of
the study conducted between August 2018 and March 2019. Of
them, 178 were lost to follow up due to the following reasons:
122 had moved away from the study area, 40 were temporarily
unavailable during the assessment period, 12 families refused
consent, 3 children had died, and 1 child was unable to participate
due to a physical handicap. The remaining 1,265 families were
approached for EEG assessments on children and their parents.

Only 9 families refused the EEG component due to concerns
about potential adverse impact of the headset on the brain.

Electroencephalography Training and
Supervision
The training of non-specialist assessors to collect EEG data in
children’s households was conducted over a day, split into two
sessions and led by SB. The training was based on the EMOTIV
EPOC and EMOTIV Pro software user manuals. Assessors were
given a basic explanation of the brain’s ability to communicate
through electrical signals and that brain electrical signals can be
recorded using EEG electrodes. Since assessors were unfamiliar
with EEG technology, this was compared conceptually to
electrocardiograms (ECG) of which most were aware. Thereafter,
they were given an introduction to the nomenclature of the
components of the EPOC headset, its electrode locations and the
importance of accurate placement of the headset on a head. This
was done with the help of pictures from the manual and hands-on
demonstrations on staff. Laminated pictures of the EEG electrode
locations were given to assessors to carry with them and use as a
reference when collecting data.

The assessors were then taught to operate the EMOTIV Pro
software and connect the headset wirelessly to the Microsoft
Surface Pro 4 tablet. In particular, their attention was drawn to
the color-coding of each electrode on the software to demonstrate
channel quality (CQ). Black color (CQ = 0) indicates no contact
between the head and electrode. Colors red (CQ = 1), orange
(CQ = 2), yellow (CQ = 3), and green (CQ = 4) indicated
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FIGURE 2 | A representative EEG trace recorded from a child during eyes-closed resting state condition. The box represents the section of the recording during
which the assessor reported a disruption due to a loud sound in the testing environment.

progressively better signal quality with “green” indicating
impedance values below 20 k� (Williams et al., 2020). Assessors
were trained to optimize channel quality by ensuring that the
felt sensors/cotton rolls were appropriately soaked with saline
solution and there was contact between the electrode and the
surface of the head by gently moving hair away from the electrode
location. They were trained to start the independent recording
for each resting-state condition only when all the electrodes
displayed green or yellow colors. Participants were requested to
first keep their eyes closed for 3 min and then either keep them
open and stare at a single stable point on the wall in front of
them (adults) or, as is common practice in EEG studies with
preschool children, make them watch a passive screensaver video
of 3 min (Jensen et al., 2021). It was ensured that the assessors
started each independent EEG recording a couple of seconds
after the participant had settled down for each of the resting-state
conditions (closed their eyes or the video had started).

This classroom training was followed by practice sessions in
which the assessors gained experience in handling the headset by
using it on each other and staff ’s children. Once data collection
began, weekly group meetings between the field supervisor and all
assessors were used to provide peer support and regular feedback,
and quarterly refresher trainings were conducted by the senior
research team member (SB). The field supervisor (KKS) also
provided supervision during the scale-up phase of the study.

Electroencephalography Data
Processing
Electroencephalography data was processed using analysis scripts
created in-house by our team on R (RStudio Team, 2020) (R-
script and metrics can be found on this link). Since numerous

studies demonstrate that filtering can affect and distort the
shape and temporal structure of EEG signals (Vanrullen, 2011;
Acunzo et al., 2012), no filtering was done on the EEG signals
obtained in this study except centering using mean correction.
Characteristics of the acquired EEG signal to be analyzed were
computed by power spectral density (PSD) estimation using
Welch method (Parameshwaran and Thiagarajan, 2019). The
PSD of the EEG signal is typically a decreasing decay function
with lower power at higher frequencies. One characteristic of
the PSD that is discussed in this study is the regular oscillatory
activity in the Alpha band that appears as a peak above the
background envelope of the PSD. The frequency corresponding
to peak of this Alpha band activity (Pa) is typically, though
not always, observed at around ∼7–11 Hz in adults and 6–
9 Hz in children, most reliably under eyes-closed conditions
and at electrodes located at O1 and O2 positions (Marshall
et al., 2002; Parameshwaran and Thiagarajan, 2019; Webster and
Ro, 2020). The percentage of participants which had an alpha
peak at each electrode position was calculated. The other simple
characteristic of the EEG time series discussed here includes the
standard deviation of the amplitude distribution [A_SD = std
(EEG time series)].

Data Collection on Participant
Characteristics
Socioeconomic Status
Information on parental education and socioeconomic status
(SES) was collected from families when they first enrolled in
the SPRING study in 2014/15 (Bhopal et al., 2019a). Principal
components analysis was used to calculate an SES index using
data on household demographics and animal and other asset
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ownership. This index was used to categorize the population
into SES quintiles.

Preschool Attendance
During the visit conducted at 3 years age as part of this
study, parents were asked if their child attended any public or
private preschool.

Anthropometry
World Health Organization (WHO) protocols (The WHO Child
Growth Standards, n.d.) were used to measure the child’s height
using the Seca 213 Portable Stadiometer and weight using
the SECA-384 electronic scale. Height and weight were used
to generate height-for-age (HAZ) and weight-for-age (WAZ)
z-scores using WHO growth standards. Head circumference was
measured using SECA-201 measuring tape.

Continuous and categorical data were compared using
Student’s t-tests and chi-square tests respectively on STATA
version 124.

We have uploaded the EDF files, EEG metrics and associated
metrics on Brainbase. We are unable to publicly share the.edf
files since they are linked to identifiable information. However,
this data can be shared with interested parties on a case-by-case
basis upon receipt of a reasonable request and exchange of data
sharing agreements.

RESULTS

Description of Study Participants
Of the 1256 families who consented, resting-state EEG data was
collected from 977 children (Neyes−open = 967, Neyes−closed = 914,
Nboth = 904). The children had a mean age of just over 3 years
(38.8 months, standard deviation (SD) = 0.9 months) and
46.1% were girls (Table 2). The mean head circumference of
participating children was 47.7cm (SD = 1.4 cm), 32% were
stunted and 25.7% were underweight defined as height-for-
age (HAZ) and weight-for-ae (WAZ) being over two standard
deviations less than the mean as per WHO growth standards.
Over half the children (53.6%) did not attend any formal
preschool. Resting-state EEG data was also collected from 1199
adults (1068 mothers and 131 fathers of participating children,
mean age = 27 years, SD = 4 years) (Neyes−open = 1194,
Neyes−closed = 1190, Nboth = 1054) (Table 3).

Acceptability of Electroencephalography
Assessments to 3-Year-Old Children
Of the 1,256 families who consented for EEG assessments, 977
children (77.8%) provided resting-state data for this study. 259
children (20.6%) refused to wear the EEG cap or got upset and
removed it after wearing it. Hardware or software issues were
experienced during 30 and 25 recordings in eyes-open and eyes-
closed conditions respectively, resulting in loss of EEG data.
58 children (4.6%) wore the cap but refused the eyes-closed
recording session. The demographic data of children who did not

4https://www.stata.com

contribute any resting-state EEG data to this study for the reasons
outlined above were compared to those who did (Table 2).
A larger proportion of children that provided EEG data were
attending preschool (27% compared to 16.7% of those who didn’t
provide EEG data, p = 0.001), and there were fewer children from
the wealthiest SES quintile (15.9% in Q5 compared to 22.2%,
p = 0.02). Children in the two groups did not differ significantly in
any other key indicators such as height- and weight-for-age and
highest level of parental education.

Feasibility of Electroencephalography
Data Collection in Rural Households
A significant challenge in household-based data collection from
adults was the unavailability of fathers due to work commitments.
Assessors observed participants move their heads or touch the
EEG headset with their hands during the assessment in 78 of
the 1881 resting-state recordings (4.1%) from children, and 40 of
the 2384 recordings (1.7%) from adults. Assessors also reported
that 59 of the 915 children (6.4%), and 4 of the 1190 (0.3%)
adults, who contributed to the eyes-closed condition had opened
their eyes for a few seconds within the recording duration.
Assessors reported visible changes in the EEG signal as a result of
disruptive sounds in the testing environment, for example family
members speaking or sound from gadgets like mobile phones,
TVs or radios, only for 23/5223 total recordings (0.4%). Figure 2
shows a representative EEG trace in which the presence of such
disruptive sounds in the testing environment toward the end of
the recording, as reported by the assessor, is visible (box).

Utility of the Electroencephalography
Recording
The properties of the EEG recordings obtained in this study are
summarized in Table 3. As per the protocol, assessors attempted
to record EEG in eyes-open and eyes-closed conditions for 3 min
each. The mean duration of the eyes-closed EEG recordings were
1.35 min (SD = 1.05 min) in children and 3.06 min (SD = 15 s)
in adults. In eyes-open condition, the mean recording duration
was 2.72 min (SD = 17 s) in children and 3.04 min (SD = 9.5 s)
in adults. The mean and SD of channel quality for each electrode
in eyes-closed condition in adults and children can be found in
Figures 3A,B and Supplementary Table 1. Apart from electrodes
at positions AF4, T7, and O2 (Figure 2 shows an example trace
in which the O2 was not working at all), where channel quality
varied across participants, very high channel quality with low
standard deviation was obtained throughout the study (ranging
from 3.29 to 3.96 in children and 3.86 to 3.99 in adults on a
scale of 0–4). Also, adults showed consistently higher channel
quality compared to children, possibly due to the headset size
being more suitable for them. In both children and adults, the
percentage of recordings which showed an alpha peak (Pa) was
higher in eyes-closed than eyes-open condition (Table 3). The
mean frequency of the alpha peak was found to be at 8.43 Hz
(SD = 1.73) in children and 10.71 Hz (SD = 3.96) in adults
(Figure 3C). The power spectrum of an illustrative eyes-closed
recording from children and adults demonstrating the frequency
of Pa can be found in Figure 3D. Figures 3E,F show that
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TABLE 2 | Participant demographics.

Children with any
EEG data (N = 977)

Children without EEG
data (N = 288)

t/chi2 (p value)

Age of child in months,
mean (SD)

38.8 (0.9) 39.0 (1.0) 2.7 (0.006)

Female, n (%) 450 (46.1%) 125 (43.4%) 0.6 (0.43)

HAZ, mean (SD)
Stunted, %

−1.5 (1.0)
32

−1.6 (1.0)
34

−1.4 (0.15)
0.4 (0.53)

WAZ, mean (SD)
Underweight, %

−1.4 (1.0)
25.7

−1.5 (0.9)
29.2

−1.5 (0.13)
1.4 (0.24)

Head circumference in cm,
mean (SD)

47.7 (1.4) 47.5 (1.4) −1.4 (0.15)

Preschool enrollment, %
Not attending
Private
Anganwadi centers

53.6
27

19.3

64.2
16.7
19.1

14.1 (0.001)

Mother’s education level,
%*
Below primary (including
never been to school)
Primary/middle school
completed
Secondary/higher
secondary school
completed
College and above

11.68
26.33
38.63
23.36

12.85
25.35
38.89
22.92

2.1 (0.91)

Father’s education level, %*
Below primary (including
never been to school)
Primary/middle school
completed
Secondary/higher
secondary school
completed
College and above

5.53
19.57
45.08
29.81

4.51
17.36
47.22
30.9

5.9 (0.43)

SES quintile (during
enrollment), %*
Q1 (poorest)
Q2
Q3
Q4
Q5 (wealthiest)

20.6
24.0
19.2
20.4
15.9

20.5
18.4
22.9
16.0
22.2

12.0 (0.02)

*1 missing data.

TABLE 3 | Study component characteristics.

Child Adult

Eyes open Eyes closed Eyes open Eyes closed

Sample size, N 914 967 1190 1194

Duration of recording (sec), mean (sd) 163.2 (17) 81 (63) 183.5 (15) 182.3 (9.5)

Channel quality, mean (SD) 3.8 (0.24) 3.79 (0.26) 3.78 (0.26) 3.97 (0.11)

Presence of peak alpha (%) 48.2 59.5 57.1 71.3

Frequency of peak alpha (Hz), mean (SD) 8.19 (1.95) 8.43 (1.73) 10.73 (0.26) 10.71 (3.96)

the electrode position at which the alpha peak occurred most
frequently was O1 and O2 in both children and adults.

Electroencephalography data collection in this study occurred
over a 33-week duration with four devices being used
simultaneously by the four teams of assessors to collect data. The

number of EEG recordings, including eyes-open and eyes-closed
in children and adults and gameplay in children, which were
made across this period totaled to 5223 recordings. As sensor
contact quality decreases, the signal decreases in resolution which
results in reduced variance of the amplitude and fluctuations. The
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FIGURE 3 | Properties of the EEG data recorded during eyes-closed resting state across the study sample of adults and children. Mean (color and size coded) and
standard deviation (reported below each electrode location) of the channel quality of each electrode in adults (A) and (B) children. (C) Frequency of peak alpha (Pa)
calculated individually for each channel in adults (blue) and children (black). (D) Power spectrum derived from representative EEG recordings from adults (blue) and
children (black). Frequency (color and size coded) of presence of an alpha peak at each electrode location in adults (E) and children (F).

standard deviation of the amplitude (A_SD) of the EEG signal
derived from adults and children can thus be considered to be
a proxy measure for sensor sensitivity (Liu et al., 2019). The
average A_SD obtained across all sensors in the four devices in
an assessment week decreased as the study progressed and the
number of cumulative recordings done on these devices increased
(Figures 4A,B), indicating that sensor quality may have degraded
with increasing use. Interestingly, channel quality, which is an
indirect readout of impedance from the data collection software,

did not show this decline across the data collection period and
increased device usage (Figures 4C,D).

DISCUSSION

In this study we present the acceptability, feasibility and potential
utility of conducting resting-state EEG assessments on preschool
children and adults in household settings in rural north India. To
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FIGURE 4 | Signal quality in eyes-closed resting-state EEG recordings. (A,B) The standard deviation of the amplitude of the EEG signal (A_SD) in adults and children
respectively across data collection period and increased device usage. (C,D) The channel quality across data collection period and increased device usage in adults
and children respectively. Linear trendline is shown.

our knowledge, this is the first published study to use a relatively
low-cost EEG portable device administered by non-specialists to
collect EEG data from children in over 900 rural households.

Acceptability of Electroencephalography
to Families and Preschool Children
While EEG has been used in laboratory and clinical settings
for decades, its application outside of these settings remains a
novelty, especially in rural households in LAMIC. Despite this,
our study shows high levels of acceptability as demonstrated
by the low rate (0.7%) of consent refusal by families for
this study component. This might be reflective of the
embedding of the study team in the community for over
six years at the time of data collection since the beginning
of the SPRING study. It might also reflect the advantages
of collecting data in households, as opposed to clinics
or community centers where participants are required to
travel to a different place for assessments. In a different
study where we conducted a qualitative exploration of
acceptability of EEG data collection in community centers
in low-income settings in Delhi, mothers of participating
children highlighted that logistical challenges associated with
transportation of participants from households to community
centers served as a barrier to participation (Lockwood Estrin

et al., 20215). We thus believe that collecting EEG data in
households reduced the burden on families and facilitated their
participation in this study.

In most EEG studies, particularly those with preschool
children, a common reason for small samples is the attrition of
participants due to children’s refusal to wear the EEG headset or
adhere to the EEG data collection protocol, which occurs 30–
45% of the time (Bell and Cuevas, 2012). The attrition rate of
20% found in this study is substantially better than that reported
in laboratory studies conducted with 3-year-old children (Wolfe
and Bell, 2007; Morasch and Bell, 2011; Cuevas et al., 2012). We
hypothesize that conducting these assessments in the comfort
of the child’s own home, and embedding the wearing of the
EEG-like headset by the protagonist within the animated story
which children were made to watch, facilitated this high rate
of acceptability to children. Further, children were motivated
to participate in the data collection protocol of keeping their
eyes closed by the fact that it was to be followed by them
playing a computerized game on a tablet computer (DEEP),
which was highly novel and engaging to them (Bhavnani et al.,
2019). Established researchers in the field of developmental

5Estrin, G. L., Bhavnani, S., Goodwin, A., Arora, R., Divan, G., Haartsen, R., et al.
(2021). From the lab to the field: acceptability of using electroencephalography
with Indian preschool children.
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EEG research also acknowledge how critical motivations such as
toys and computer games are useful in engaging pre-schoolers
in assessment protocols (Bell and Cuevas, 2012). However, we
observed that while we were able to obtain approximately 3-min
long EEG recordings from both children and adults in eyes-open
conditions, children often did not keep their eyes closed for
the entire 3-min duration while adults did. Despite this, the
relatively short duration of one and a half minutes of eyes-
closed data collected seems to be enough to extract metrics which
demonstrate the potential utility of these recordings (see below).

Feasibility of Electroencephalography
Data Collection at Scale in Rural
Households by Non-specialists
In this study, we demonstrate that it is feasible for non-specialists
to collect EEG data with a one-day classroom training. We
speculate that the equipment, software and protocol used in this
study allowed us to make a critical advance to the methods of
other studies conducted in other low resource settings in which
EEG data collection was done by relatively technically advanced
research personnel such as Ph.D. students, post-doctoral fellows
or laboratory technicians (Storrs, 2017; Katus et al., 2019).
In this study, we demonstrate that it is feasible for EEG to
be administered by non-specialists naive to EEG technology,
specifically, local women recruited from the community in which
the study was conducted.

One of the main challenges associated with data collection
in household settings is testing in an uncontrolled environment
with potential for various types of loud sounds, movement, and
electrical disturbances. Interestingly, disturbances that led to
visible changes in the EEG signal that prompted assessors to make
a note were extremely rare. This might be because the duration
of the resting-state recordings was relatively short. Additionally,
assessor training on the protocol of household visits included
the importance of testing participants in a separate room within
the household to minimize chances of any distractions during
the assessment. We speculate that the few reported disturbances,
thus, might represent circumstances within specific household
settings such as the inability to conduct testing in a separate room,
or the house being located in a noisy environment.

While recognizing the advantages of the low-cost, portable
EMOTIV EPOC headset and data collection software, described
in detail above, this study has also highlighted some of its
important limitations, particularly with respect to large-scale
data collection. The deterioration of signal observed due to
excessive usage presents one such limitation. This might be
due to the metallic electrode gradually getting oxidized over
time due to excessive exposure to saline. Thus, although
replacement for sensors are available, since the socket holding
the sensor or the threading got damaged, over time, this led
to an increase in impedance and attenuation of signal range
(Kappenman and Luck, 2010). Importantly though, this increase
in impedance did not reflect a change in channel quality as
reported by the data collection software, which might be due to
a relatively wide range of impedance values being categorized
into each of the four possible channel quality output values.

While broad categorizations aid in simplifying the user interface
and its interpretability, it can compromise the precision with
which small changes in device performance can be detected,
ultimately affecting the quality of data available across large
samples. In addition, while the fixed configuration of the headset
had advantages with respect to training non-specialists, its
disadvantages included the inability to replace individual faulty
or oxidized electrodes. Given our experience in this study, we
speculate that each device can be used to collect between 350
and 500 good quality EEG recordings, with constant careful
attention being paid to the condition of the headset and sensor
as usage progresses. We further recommend that researchers
carefully consider the amount of usage of the EEG device, and
the possible need for its replacement within the duration of a
study, while estimating the cost-benefit ratio of using such low-
cost EEG equipment. These findings also highlight the need to
study other low-cost EEG data collection systems which might be
more durable, like gel-based devices, to test their use at scale.

An important characteristic of the spectral properties of the
EEG trace is the presence of regular oscillatory activity in eyes-
closed conditions. The power spectrum of EEG signals derived
from the EMOTIV EPOC in this study shows the presence of an
alpha peak more often in eyes-closed than eyes-open resting state
condition, and most frequently in electrodes located at O1 and
O2 positions, which are both well-established properties of this
EEG metric (Gale et al., 1971). Additionally, the mean frequency
of the peak shifts from 8.43 Hz in children and 10.71 Hz in adults,
similar to findings from laboratory studies in these populations
(Marshall et al., 2002; Perone et al., 2018), providing evidence of
the usability of this dataset.

Strengths and Limitations
The strengths of this study include (a) data collection on a
large sample of preschool children and their adult parents,
(b) the use of a portable data collection system comprising a
relatively low-cost EEG device connected to a tablet computer,
(c) the use of non-specialist workers to collect EEG data, and
(d) the collection of EEG data in uncontrolled settings of rural
households. One important limitation of our study is the use of
the EMOTIV EPOC, which has been designed for use on adult
head sizes, on children who have a smaller head circumference.
We speculate that the use of child-size devices would significantly
improve the quality of the EEG signal. We also did not use
any lab-grade EEG device implemented by specialist providers
concurrently with the EMOTIV EPOC, to compare the latter’s
performance in our setting.

CONCLUSION

There is an urgent need to test and validate technological
advances in neurophysiological methods, such as low-cost
scalable EEG devices, for their potential to collect large scale
data from young children and adults in populations which are
historically underrepresented in such research, while arguably
being the most likely to benefit from it. This study demonstrates
the acceptability and feasibility of conducting such EEG studies
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at scale in a rural low-resource community and provides some
preliminary insights into the basic characteristics of the EEG
data derived. A key next step of this work is to explore
the potential of metrics derived from this resting-state EEG
dataset to index cognitive development and function in this
population of preschool children and adults. Our results offer
the impetus needed to further refine the methods and devices
and validate such scalable methods to overcome existing research
inequity. These are the essential first steps toward gaining
a comprehensive understanding of the diversities in brain
development and function across populations and settings, based
on the evidence generated from samples that have traditionally
been underrepresented or missing in EEG research due to
logistical challenges.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Institutional Review Board, Sangath and
Institutional Ethics Committee, Public Health Foundation of
India. Written informed consent to participate in this study
was provided by the participants’ legal guardian/next of kin.
Written informed consent was obtained from the individual(s),

and minor(s)’ legal guardian/next of kin, for the publication of
any potentially identifiable images or data included in this article.

AUTHOR CONTRIBUTIONS

SB, DP, DM, GD, TT, and VP were responsible for study
conception and design. SB, DP, KS, and DM were responsible for
the acquisition and management of data. SB, DP, DM, TT, and
VP analyzed and interpreted the data. SB, DP, and DM drafted
the manuscript. All authors edited and approved the manuscript.

FUNDING

Funding was provided by Madura Microfinance as part of a larger
mission of raising capacity in rural India. During the funding
period, TT was Chairman and Managing Director of Madura
Microfinance but since 1 April 2021 no longer holds this position.
Her strategic input in this project, however, has been in her role
as Founder and Chief Scientist at Sapien Labs. She receives no
compensation for this work.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnhum.
2022.802764/full#supplementary-material

REFERENCES
Acunzo, D. J., Mackenzie, G., and van Rossum, M. C. W. (2012). Systematic

Biases in Early ERP and ERF Components as a Result of High-Pass Filtering.
J. Neurosci. Methods 209, 212–218. doi: 10.1016/j.jneumeth.2012.06.011

Alahmadi, N., Evdokimov, S. A., Kropotov, Y., Müller, A. M., and Jäncke, L.
(2016). Different Resting State EEG Features in Children from Switzerland and
Saudi Arabia. Front. Hum. Neurosci. 10:559. doi: 10.3389/fnhum.2016.00559

Anderson, A. J., and Perone, S. (2018). Developmental Change in the Resting State
Electroencephalogram: insights into Cognition and the Brain. Brain Cogn. 126,
40–52. doi: 10.1016/j.bandc.2018.08.001

Askari, E., Setarehdan, S. K., Sheikhani, A., Mohammadi, M. R., and Teshnehlab,
M. (2018). Designing a Model to Detect the Brain Connections Abnormalities in
Children with Autism Using 3D-Cellular Neural Networks. J. Integr. Neurosci.
17, 391–411. doi: 10.3233/JIN-180075

Badcock, N. A., Mousikou, P., Mahajan, Y., de Lissa, P., Thie, J., and McArthur, G.
(2013). Validation of the Emotiv EPOC( R©) EEG Gaming System for Measuring
Research Quality Auditory ERPs. PeerJ 1:e38. doi: 10.7717/peerj.38

Badcock, N. A., Preece, K. A., de Wit, B., Glenn, K., Fieder, N., Thie, J., et al. (2015).
Validation of the Emotiv EPOC EEG System for Research Quality Auditory
Event-Related Potentials in Children. PeerJ. 3:e907. doi: 10.7717/peerj.907

Bell, M. A., and Cuevas, K. (2012). “Using EEG to Study Cognitive Development:
Issues and Practices. J. Cogn. Dev. 13, 281–294. doi: 10.1080/15248372.2012.
691143

Bhavnani, S., Estrin, G. L., Haartsen, R., Jensen, S. K. G., Gliga, T., Patel, V.,
et al. (2021). EEG Signatures of Cognitive and Social Development of Preschool
Children–a Systematic Review. PLoS One 16:e0247223. doi: 10.1371/journal.
pone.0247223

Bhavnani, S., Mukherjee, D., Dasgupta, J., Verma, D., Parameshwaran, D., Divan,
G., et al. (2019). Development, Feasibility and Acceptability of a Gamified
Cognitive DEvelopmental Assessment on an E-Platform (DEEP) in Rural

Indian Pre-Schoolers – a Pilot Study. Glob. Health Act. 12:1548005. doi: 10.
1080/16549716.2018.1548005

Bhopal, S., Roy, R., Verma, D., Kumar, D., Avan, B., Khan, B., et al. (2019a).
Impact of Adversity on Early Childhood Growth & Development in Rural
India: findings from the Early Life Stress Sub-Study of the SPRING Cluster
Randomised Controlled Trial (SPRING-ELS). PLoS One 14:1. doi: 10.1371/
journal.pone.0209122

Bhopal, S., Verma, D., Roy, R., Soremekun, S., Kumar, D., Bristow, M., et al.
(2019b). The Contribution of Childhood Adversity to Cortisol Measures
of Early Life Stress amongst Infants in Rural India: findings from the
Early Life Stress Sub-Study of the SPRING Cluster Randomised Controlled
Trial (SPRING-ELS). Psychoneuroendocrinology 107, 241–250. doi: 10.1016/j.
psyneuen.2019.05.012

Bitta, M., Kariuki, S. M., Abubakar, A., and Newton, C. (2017). Burden of
Neurodevelopmental Disorders in Low and Middle-Income Countries: a
Systematic Review and Meta-Analysis. Wellc. Open Res. 2:121. doi: 10.12688/
wellcomeopenres.13540.3

Bosl, W. J., Tager-Flusberg, H., and Nelson, C. A. (2018). EEG Analytics for Early
Detection of Autism Spectrum Disorder: a Data-Driven Approach. Sci. Rep.
8:6828. doi: 10.1038/s41598-018-24318-x

Bosl, W. J., Tierney, A., Tager-Flusberg, H., and Nelson, C. A. (2011). EEG
Complexity as a Biomarker for Autism Spectrum Disorder Risk. BMC Med.
9:18. doi: 10.1186/1741-7015-9-18

Cuevas, K., Raj, V., and Bell, M. A. (2012). A Frequency Band Analysis of Two-
Year-Olds’ Memory Processes. Internat. J. Psychophys. 83, 315–322. doi: 10.
1016/j.ijpsycho.2011.11.009

De Vos, M., and Debener, S. (2014). Mobile EEG: Towards Brain Activity
Monitoring during Natural Action and Cognition. Internat. J. Psychophys. 91,
1–2. doi: 10.1016/j.ijpsycho.2013.10.008

Deary, I. J., Penke, L., and Johnson, W. (2010). The Neuroscience of Human
Intelligence Differences. Nat. Rev. Neurosci. 11, 201–211. doi: 10.1038/nrn2793

Frontiers in Human Neuroscience | www.frontiersin.org 12 March 2022 | Volume 16 | Article 802764

https://www.frontiersin.org/articles/10.3389/fnhum.2022.802764/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnhum.2022.802764/full#supplementary-material
https://doi.org/10.1016/j.jneumeth.2012.06.011
https://doi.org/10.3389/fnhum.2016.00559
https://doi.org/10.1016/j.bandc.2018.08.001
https://doi.org/10.3233/JIN-180075
https://doi.org/10.7717/peerj.38
https://doi.org/10.7717/peerj.907
https://doi.org/10.1080/15248372.2012.691143
https://doi.org/10.1080/15248372.2012.691143
https://doi.org/10.1371/journal.pone.0247223
https://doi.org/10.1371/journal.pone.0247223
https://doi.org/10.1080/16549716.2018.1548005
https://doi.org/10.1080/16549716.2018.1548005
https://doi.org/10.1371/journal.pone.0209122
https://doi.org/10.1371/journal.pone.0209122
https://doi.org/10.1016/j.psyneuen.2019.05.012
https://doi.org/10.1016/j.psyneuen.2019.05.012
https://doi.org/10.12688/wellcomeopenres.13540.3
https://doi.org/10.12688/wellcomeopenres.13540.3
https://doi.org/10.1038/s41598-018-24318-x
https://doi.org/10.1186/1741-7015-9-18
https://doi.org/10.1016/j.ijpsycho.2011.11.009
https://doi.org/10.1016/j.ijpsycho.2011.11.009
https://doi.org/10.1016/j.ijpsycho.2013.10.008
https://doi.org/10.1038/nrn2793
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-802764 March 15, 2022 Time: 18:16 # 13

Bhavnani et al. Portable EEG in Rural Communities

Divan, G., Bondre, A., Hill, Z., Lingam, R., Sharma, K. K., Roy, R., et al.
(2015). “Developing SPRING: Kilkaari a Community Early Child Development
Intervention for India,” in Proceedings of the International Developmental
Paediatric Congress. (Istanbul).

Ekandem, J. I., Davis, T. A., Alvarez, I., James, M. T., and Gilbert, J. E.
(2012). Evaluating the Ergonomics of BCI Devices for Research and
Experimentation. Ergonomics 55, 592–598. doi: 10.1080/00140139.2012.66
2527

Gale, A., Coles, M., and Boyd, E. (1971). Variation in Visual Input and the Occipital
EEG: II. Psychon. Sci. 23, 99–100. doi: 10.3758/BF03336026

Gurau, O., Bosl, W. J., and Newton, C. A. (2017). How Useful Is
Electroencephalography in the Diagnosis of Autism Spectrum Disorders
and the Delineation of Subtypes: a Systematic Review. Front. Psychiatry 8:121.
doi: 10.3389/fpsyt.2017.00121

Jensen, S. K. G., Kumar, S., Xie, W., Tofail, F., Haque, R., Petri, W. A., et al.
(2019). Neural Correlates of Early Adversity among Bangladeshi Infants. Sci.
Rep. 9:3507. doi: 10.1038/s41598-019-39242-x

Jensen, S. K. G., Xie, W., Kumar, S., Haque, R., Petri, W. A., and Nelson, C. A.
(2021). Associations of Socioeconomic and Other Environmental Factors with
Early Brain Development in Bangladeshi Infants and Children. Dev. Cogn.
Neurosci. 50:100981. doi: 10.1016/j.dcn.2021.100981

Kappenman, E. S., and Luck, S. J. (2010). The Effects of Electrode Impedance on
Data Quality and Statistical Significance in ERP Recordings. Psychophysiology
47, 888–904. doi: 10.1111/j.1469-8986.2010.01009.x

Katus, L., Hayes, N. J., Mason, L., Blasi, A., McCann, S., Darboe, M. K., et al.
(2019). Implementing Neuroimaging and Eye Tracking Methods to Assess
Neurocognitive Development of Young Infants in Low- and Middle-Income
Countries. Gates Open Res. 3:2. doi: 10.12688/gatesopenres.12951.2

Khanna, A., Pascual-Leone, A., Michel, C. M., and Farzan, F. (2015). Microstates in
Resting-State EEG: Current Status and Future Directions. Neurosci. Biobehav.
Rev. 49, 105–113. doi: 10.1016/j.neubiorev.2014.12.010

Knyazev, G. G., Savostyanov, A. N., Volf, N. V., Liou, M., and Bocharov, A. V.
(2012). EEG Correlates of Spontaneous Self-Referential Thoughts: a Cross-
Cultural Study. Internat. J. Psychophys. 86, 173–181. doi: 10.1016/j.ijpsycho.
2012.09.002

Lau-Zhu, A., Lau, M. P. H., and McLoughlin, G. (2019). Mobile EEG in Research
on Neurodevelopmental Disorders: Opportunities and Challenges. Dev. Cogn.
Neurosci. 36:100635. doi: 10.1016/j.dcn.2019.100635

Lingam, R., Gupta, P., Zafar, S., Hill, Z., Yousafzai, A., Iyengar, S., et al. (2014).
Understanding Care and Feeding Practices: building Blocks for a Sustainable
Intervention in India and Pakistan. Ann. N Y Acad. Sci. 1308, 204–217. doi:
10.1111/nyas.12326

Liu, D., Wang, Q., Zhang, Y., Liu, X., Lu, J., and Sun, J. (2019). A Study on
Quality Assessment of the Surface EEG Signal Based on Fuzzy Comprehensive
Evaluation Method. Comp. Assis. Surg. 24, 167–173. doi: 10.1080/24699322.
2018.1557888

Loo, S. K., Lenartowicz, A., and Makeig, S. (2016). Research Review: use of
EEG Biomarkers in Child Psychiatry Research - Current State and Future
Directions. J. Child Psychol. Psychiatry All. Dis. 57, 4–17. doi: 10.1111/jcpp.1
2435

Lu, C., Black, M. M., and Richter, L. M. (2016). Risk of Poor Development in
Young Children in Low-Income and Middle-Income Countries: an Estimation
and Analysis at the Global. Reg. Count. Lev. Lancet Glob. Health 4, e916–e922.
doi: 10.1016/S2214-109X(16)30266-2

Marshall, P. J., Bar-Haim, Y., and Fox, N. A. (2002). Development of the EEG from
5 Months to 4 Years of Age. Clin. Neurophys. 113, 1199–1208. doi: 10.1016/
s1388-2457(02)00163-3

Martínez, F., Barraza, C., González, N., and González, J. (2016). KAPEAN:
Understanding Affective States of Children with ADHD. Educ. Tech. Soc. 19,
18–28.

Mercado-Aguirre, I. M., Gutiérrez-Ruiz, K., and Contreras-Ortiz, S. H. (2019).
“Acquisition and Analysis of Cognitive Evoked Potentials Using an Emotiv
Headset for ADHD Evaluation in Children,” in XXII Symposium on Image,
Signal Processing and Artificial Vision. (STSIVA), 1–5. doi: 10.1109/STSIVA.
2019.8730225

Morasch, K. C., and Bell, M. A. (2011). The Role of Inhibitory Control in Behavioral
and Physiological Expressions of Toddler Executive Function. J. Exp. Child
Psychol. 108, 593–606. doi: 10.1016/j.jecp.2010.07.003

Neto, O. L., Haenni, S., Phuka, J., Ozella, L., Paolotti, D., Cattuto, C., et al. (2021).
Combining Wearable Devices and Mobile Surveys to Study Child and Youth
Development in Malawi: Implementation Study of a Multimodal Approach.
JMIR Public Health Surv. 7:e23154. doi: 10.2196/23154

Parameshwaran, D., Sathishkumar, S., and Thiagarajan, T. C. (2021). The Impact of
Socioeconomic and Stimulus Inequality on Human Brain Physiology. Sci. Rep.
11:7439. doi: 10.1038/s41598-021-85236-z

Parameshwaran, D., Subramaniyam, N. P., and Thiagarajan, T. C. (2019).
Waveform Complexity: a New Metric for EEG Analysis. J. Neurosci. Methods
325:108313. doi: 10.1016/j.jneumeth.2019.108313

Parameshwaran, D., and Thiagarajan, T. C. (2019). Characterizing Peaks in the
EEG Power Spectrum. Biomed. Phys. Eng. Exp. 5:045023. doi: 10.1088/2057-
1976/ab29d0

Perone, S., Palanisamy, J., and Carlson, S. M. (2018). Age-Related Change in Brain
Rhythms from Early to Middle Childhood: links to Executive Function. Dev.
Sci. 21:e12691. doi: 10.1111/desc.12691

RStudio Team (2020). RStudio: Integrated Development for R. Boston, MA: RStudio
Team.

Snyder, S. M., Rugino, T. A., Hornig, M., and Stein, M. A. (2015). Integration of
an EEG Biomarker with a Clinician’s ADHD Evaluation. Brain Behav. 5:e00330.
doi: 10.1002/brb3.330

Storrs, C. (2017). How Poverty Affects the Brain. Nature News 547, 150. doi:
10.1038/547150a

The WHO Child Growth Standards (n.d.). The WHO Child Growth Standards.
https://www.who.int/tools/child-growth-standards (Accessed December 21,
2020)

Valdes-Sosa, P. A., Galan-Garcia, L., Bosch-Bayard, J., Bringas-Vega, M. L., Aubert-
Vazquez, E., Rodriguez-Gil, I., et al. (2021). The Cuban Human Brain Mapping
Project, a Young and Middle Age Population-Based EEG, MRI, and Cognition
Dataset. Sci. Data 8:45. doi: 10.1038/s41597-021-00829-7

Vanrullen, R. (2011). Four Common Conceptual Fallacies in Mapping the Time
Course of Recognition. Front. Psychol. 2:365. doi: 10.3389/fpsyg.2011.00365

Webster, K., and Ro, T. (2020). Visual Modulation of Resting State α Oscillations.
ENeuro 7:1. doi: 10.1523/ENEURO.0268-19.2019

Williams, N. S., McArthur, G. M., and Badcock, N. A. (2020). 10 Years of EPOC:
A Scoping Review of Emotiv’s Portable EEG Device. BioRxiv 2020:202085.
doi: 10.1101/2020.07.14.202085

Wolfe, C. D., and Bell, M. A. (2007). Sources of Variability in Working Memory in
Early Childhood: a Consideration of Age, Temperament, Language, and Brain
Electrical Activity. Cogn. Dev. 22, 431–455. doi: 10.1016/j.cogdev.2007.08.007

Xie, W., Kumar, S., Kakon, S. H., Haque, R., Petri, W. A., and Nelson, C. A.
(2019). Chronic Inflammation Is Associated with Neural Responses to Faces
in Bangladeshi Children. NeuroImage 202:116110. doi: 10.1016/j.neuroimage.
2019.11611

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Bhavnani, Parameshwaran, Sharma, Mukherjee, Divan, Patel and
Thiagarajan. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 13 March 2022 | Volume 16 | Article 802764

https://doi.org/10.1080/00140139.2012.662527
https://doi.org/10.1080/00140139.2012.662527
https://doi.org/10.3758/BF03336026
https://doi.org/10.3389/fpsyt.2017.00121
https://doi.org/10.1038/s41598-019-39242-x
https://doi.org/10.1016/j.dcn.2021.100981
https://doi.org/10.1111/j.1469-8986.2010.01009.x
https://doi.org/10.12688/gatesopenres.12951.2
https://doi.org/10.1016/j.neubiorev.2014.12.010
https://doi.org/10.1016/j.ijpsycho.2012.09.002
https://doi.org/10.1016/j.ijpsycho.2012.09.002
https://doi.org/10.1016/j.dcn.2019.100635
https://doi.org/10.1111/nyas.12326
https://doi.org/10.1111/nyas.12326
https://doi.org/10.1080/24699322.2018.1557888
https://doi.org/10.1080/24699322.2018.1557888
https://doi.org/10.1111/jcpp.12435
https://doi.org/10.1111/jcpp.12435
https://doi.org/10.1016/S2214-109X(16)30266-2
https://doi.org/10.1016/s1388-2457(02)00163-3
https://doi.org/10.1016/s1388-2457(02)00163-3
https://doi.org/10.1109/STSIVA.2019.8730225
https://doi.org/10.1109/STSIVA.2019.8730225
https://doi.org/10.1016/j.jecp.2010.07.003
https://doi.org/10.2196/23154
https://doi.org/10.1038/s41598-021-85236-z
https://doi.org/10.1016/j.jneumeth.2019.108313
https://doi.org/10.1088/2057-1976/ab29d0
https://doi.org/10.1088/2057-1976/ab29d0
https://doi.org/10.1111/desc.12691
https://doi.org/10.1002/brb3.330
https://doi.org/10.1038/547150a
https://doi.org/10.1038/547150a
https://www.who.int/tools/child-growth-standards
https://doi.org/10.1038/s41597-021-00829-7
https://doi.org/10.3389/fpsyg.2011.00365
https://doi.org/10.1523/ENEURO.0268-19.2019
https://doi.org/10.1101/2020.07.14.202085
https://doi.org/10.1016/j.cogdev.2007.08.007
https://doi.org/10.1016/j.neuroimage.2019.11611
https://doi.org/10.1016/j.neuroimage.2019.11611
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

	The Acceptability, Feasibility, and Utility of Portable Electroencephalography to Study Resting-State Neurophysiology in Rural Communities
	Introduction
	Materials and Methods
	Study Site and Ethics
	Field Personnel
	Equipment
	Criteria Guiding Selection of the EPOC Device
	Prior Evidence
	Hardware Design
	User-Friendly Software


	Study Procedures
	Formative Phase

	Consenting
	Child Engagement Strategies
	Data Collection Protocol
	Implementation Phase

	Electroencephalography Training and Supervision
	Electroencephalography Data Processing
	Data Collection on Participant Characteristics
	Socioeconomic Status
	Preschool Attendance
	Anthropometry


	Results
	Description of Study Participants
	Acceptability of Electroencephalography Assessments to 3-Year-Old Children
	Feasibility of Electroencephalography Data Collection in Rural Households
	Utility of the Electroencephalography Recording

	Discussion
	Acceptability of Electroencephalography to Families and Preschool Children
	Feasibility of Electroencephalography Data Collection at Scale in Rural Households by Non-specialists
	Strengths and Limitations

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


