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Over 250 million children in developing countries are at risk of not achieving their
developmental potential, and unlikely to receive timely interventions because existing
developmental assessments that help identify children who are faltering are prohibitive
for use in low resource contexts. To bridge this “detection gap,” we developed a
tablet-based, gamified cognitive assessment tool named DEvelopmental assessment
on an E-Platform (DEEP), which is feasible for delivery by non-specialists in rural Indian
households and acceptable to all end-users. Here we provide proof-of-concept of using
a supervised machine learning (ML) approach benchmarked to the Bayley’s Scale of
Infant and Toddler Development, 3rd Edition (BSID-III) cognitive scale, to predict a child’s
cognitive development using metrics derived from gameplay on DEEP. Two-hundred
children aged 34–40 months recruited from rural Haryana, India were concurrently
assessed using DEEP and BSID-III. Seventy percent of the sample was used for training
the ML algorithms using a 10-fold cross validation approach and ensemble modeling,
while 30% was assigned to the “test” dataset to evaluate the algorithm’s accuracy on
novel data. Of the 522 features that computationally described children’s performance
on DEEP, 31 features which together represented all nine games of DEEP were selected
in the final model. The predicted DEEP scores were in good agreement (ICC [2,1] > 0.6)
and positively correlated (Pearson’s r = 0.67) with BSID-cognitive scores, and model
performance metrics were highly comparable between the training and test datasets.
Importantly, the mean absolute prediction error was less than three points (<10% error)
on a possible range of 31 points on the BSID-cognitive scale in both the training and
test datasets. Leveraging the power of ML which allows iterative improvements as
more diverse data become available for training, DEEP, pending further validation, holds
promise to serve as an acceptable and feasible cognitive assessment tool to bridge the
detection gap and support optimum child development.

Keywords: serious game, cognitive development, LMIC, digital assessment, mHealth, machine learning, scalable,
preschool children
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INTRODUCTION

Nurturing care during early childhood leads to lasting positive
impacts, including more grades completed in school, and higher
adult incomes (Alderman et al., 2017; Nandi et al., 2017;
Trevarthen et al., 2018), thereby forming the foundations to
achieving the Sustainable Development Goals (Daelmans et al.,
2017). However, using proxy measures of poverty and stunting
which are known to reflect poor brain development, recent
estimates indicate that nearly 250 million children in low and
middle-income countries (LMICs) below 5 years of age, of which
65 million live in India, fail to attain their full developmental
potential (Lu et al., 2016). These proxy measures are likely to
underestimate the true extent of this burden since they are
not direct measures of brain functioning. Using a more direct
measure – the Early Child Development Index (ECDI) – one
study suggested that 81 million children in the age group of 3–
4 years alone were developing sub-optimally across 35 LMICs,
with sub-Saharan Africa and South Asia contributing the largest
numbers (McCoy et al., 2016).

While these statistics are alarming, a growing body of
evidence suggests that early interventions targeted to optimize
development can mitigate the impact of adversities, increase
resilience, and protect developmental trajectories (Jeong et al.,
2018). However, routine developmental assessments which aid
in timely identification of children in need of interventions are
rarely conducted in LMICs because they are heavily dependent on
skilled healthcare professionals conducting lengthy assessments
using expensive and proprietary tools. This confluence of adverse
environments and expensive, resource intensive developmental
assessments leads to large “detection” gaps, whereby children
with developmental impairments remain unidentified and
underserved (Dasgupta et al., 2016).

Therefore, efforts are underway to develop scalable and
cross-culturally valid tools for assessment of early childhood
development (ECD), so that children in need of interventions
receive timely referrals. Although significant progress has been
made, it is still an emerging science with key limitations. First,
the ECD field tends to focus largely on the first 1000 days
(Elmadfa and Meyer, 2012; Ghosh, 2016; Wrottesley et al., 2016).
However, brain development continues beyond the first three
years, making it imperative to extend developmental monitoring
to at least until the time when children start formal schooling
where systems are in place to regularly assess each child through
metrics of academic performance. Second, existing tools are
limited by either being based on (1) parent report, the accuracy
of which is often dependent on the parent’s knowledge of child
development and reliance on crude developmental milestones, or
(2) assessor observation, which requires extensive training and
regular supervision to build assessor skills.

These limitations have led to a growing need for ECD
assessments that are objective and accurate, as well as feasible
for delivery by non-specialists requiring minimal training
and supervision. One solution could be the use of mobile
technology which has demonstrated immense potential in scaling
up services in low resource settings. m-Health strategies are
increasingly being used as job-aids by community health workers

(CHWs) in LMICs. A systematic review demonstrated that
the use of technology not only empowered and motivated
them but also improved their credibility to the communities
they served (Agarwal et al., 2015). CHWs empowered with
mobile data collection tools are also more efficient and the
data is less prone to errors compared to paper-pencil tools
(Thies et al., 2012). Additionally, children from the age of
2 years on have been shown to interact meaningfully with
touch-screen tablets, understand rules of playing digital games
and provide appropriate responses through gestures such
as taps and drags, providing a unique opportunity to use
gamified neuropsychological tasks for directly assessing children’s
developmental abilities (Semmelmann et al., 2016). The emerging
literature demonstrates that computerized neuropsychological
assessments are reliable and valid (Martinovic et al., 2015),
and the introduction of “gamification” increases participant
engagement and ecological validity (Lumsden et al., 2016;
Pitchford and Outhwaite, 2016). The advantages of data in
digital format, beyond improvements in efficiency and accuracy,
can be further complemented by the use of advanced analytics
such as machine learning, which has the potential to predict
outcomes using a data-driven approach (Anzulewicz et al.,
2016; Bosl et al., 2018), and continually update algorithms to
iteratively improve the accuracy of these predictions as more
relevant data become available. Therefore, m-Health technology
is not only acceptable to all end users, but has all the
other ingredients necessary to create a validated, cross-cultural,
and scalable tool.

Although computerized versions of classical
neuropsychological tests (CANTAB, CogState) are already
available (De Luca et al., 2003; Williams et al., 2016), they are
cost-intensive and typically not designed for very young children
(2–4 years). Other low-cost, open-source tools have similar
limitations since they tend to focus on academic skills such as
reading and math (Hubber et al., 2016; Miller, 2018; Pitchford
et al., 2018), which are unsuitable for assessing preschool children
who are yet to develop literacy-numeracy skills, thereby missing
the window of opportunity of the early years when the brain is
maximally plastic. The limited number of tools that are usable
in the preschool age-range typically focus only on one or a few
domains of cognition such as attention and memory (McPherson
and Burns, 2008; Vergauwe et al., 2009).

These gaps call for the development of a new digital
assessment tool which allows for comprehensive assessment of a
diverse range of cognitive skills in preschool children. Therefore,
our interdisciplinary team created “DEvelopmental Assessment
on an E-Platform” (DEEP) to fill this gap (Bhavnani et al.,
2019). DEEP is a gamified cognitive assessment tool comprising
age-appropriate games administered on Android tablets. The
DEEP games were designed in collaboration with an expert team
comprising a developmental pediatrician, psychiatrist, clinical
psychologist, neuroscientists, machine learning experts and game
developers through consensus workshops, and tap into multiple
cognitive skills including manual processing speed, manual
coordination, attention, response inhibition, reasoning, visual
form perception, visual integration, and memory. An initial
prototype was developed, which underwent multiple rounds of
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iteratively testing to improve the acceptability, feasibility and ease
of administration of DEEP in our study setting. Pilot testing of
the current version of DEEP on 3 years old children in rural
Indian settings found it to be (1) highly acceptable to children and
their families, (2) feasible for delivery by non-specialists in rural
households, and (3) capable of discriminating children’s cognitive
abilities based on the variability of performance on the games
(Bhavnani et al., 2019).

In this study, we explored the potential of DEEP to measure
cognitive development of 3 years old children. To this end,
we used a supervised machine learning approach to predict a
child’s Bayley’s Scale of Infant and Toddler Development, 3rd
Edition (BSID-III) cognitive score, using metrics derived from
gameplay on DEEP. We chose to benchmark DEEP to BSID-III
in this pilot study because it is the most widely used research
tool to measure child development globally (Tran et al., 2014;
Springer et al., 2018), including in India (Balakrishnan et al.,
2018; Thomas et al., 2019), thereby enabling comparisons of
our cohort with other studies. BSID-III assesses development
across five domains including cognition, language and motor
and is suitable for children aged 1–42 months. However, as
highlighted for existing standardized tools, BSID-III is costly,
time-intensive and requires high levels of assessor skills and
training, making it prohibitive for use at scale in low resource
contexts. Given our mandate to develop alternative scalable
options, we asked two critical questions of DEEP – (1) how
accurately can a child’s performance on DEEP predict their BSID-
III cognitive score, and (2) how accurately can DEEP identify
children who score below the 25th percentile on the BSID-
III cognitive assessment. Once validated, DEEP will help in
identifying children with delayed or impaired cognitive abilities
or children with a neurodevelopmental disorder which impacts
cognitive functioning.

MATERIALS AND METHODS

Study Site and Participants
The participants in this cross-sectional study were recruited
from 120 villages in Rewari district in rural Haryana, India,
and comprised 200 children (51.5% girls) aged 34–40 months
randomly selected from the SPRING ECD trial cohort (Lingam
et al., 2014; Divan et al., 2015; ClinicalTrials.gov, 2017). Bhopal
et al. (2019) has previously reported cohort and study site
details. The exclusion criteria while recruiting the target sample
size of 200 were (1) vision and hearing loss or impairment as
reported by the parent, (2) any other condition that impeded
the child from interacting meaningfully with the tablet computer,
or (3) refusal of parental consent. Prior to data collection,
the objectives and methods of our study were explained to
the parent and written informed consent was obtained from
those who agreed to participate in this study. Appointments
were scheduled as per the family’s convenience and data was
collected from January–October 2018. This study was conducted
in accordance with the Declaration of Helsinki and approved
by the institutional ethics committees of the Public Health
Foundation of India and Sangath.

Study Tools
The following tools were administered by a team of 2
non-specialists (henceforth referred to as assessors) through
household visits conducted over 1.5 h each on 2 consecutive days:

DEEP Questionnaire
A short parent-report questionnaire was administered to obtain
information on the child’s attendance in private or government
preschools, prior exposure to smartphones and digital games, and
overall health and well-being on the day of the assessment.

Bayley’s Scale of Infant and Toddler Development,
3rd Edition (BSID-III)
A translated version of the BSID-III (Albers and Grieve, 2007)
adapted for administration by non-specialists was used following
a protocol described previously (Bhopal et al., 2019). Bhopal et al.
demonstrated that BSID-III scores in all domains of development
(cognitive, language, and motor) at 18 months of age were
negatively associated with all measures of childhood adversity in
this cohort, as would be expected from the scientific literature on
the impact of adversities on ECD (Hair et al., 2015; Luby, 2015;
Pavlakis et al., 2015), and providing validation to this version
of the BSID-III in our study site. The BSID-III assessment for 3
year olds was delivered by the same outcome assessment team as
in the SPRING RCT study (ClinicalTrials.gov: SPRING Cluster
Randomized Controlled Trial; Lingam et al., 2014; Divan et al.,
2015). These assessors were rigorously trained and supervised by
ECD specialists, with inter-rater reliability between the assessors
being greater than 99%. BSID-III is an observation based tool and
involves a series of tasks for a child to complete including object
manipulation, demonstrating understanding of basic concepts
(color, shape, size, numbers, etc.), and simple physical activity. Six
BSID-III sub-scales were administered – cognitive, receptive and
expressive language, fine and gross motor and social-emotional.
Any child unable to meet BSID-III milestones appropriate for
25.5–28.5 months was referred to pediatric clinics for follow-
up assessments. The raw, scaled, and composite scores were
calculated following protocols described in the manual.

DEEP Gamified Assessment
DEEP is a gamified cognitive assessment tool comprising age-
appropriate games administered on Android tablets (Samsung
Tab E), and takes about 20–30 min to complete (Bhavnani
et al., 2019; Supplementary Figure S6). It has nine games, each
with 2–6 levels of difficulty, woven together through a first
person narrative. DEEP games tap into multiple cognitive skills
including manual processing speed, manual coordination, hand-
eye coordination, attention, response inhibition, reasoning, visual
form perception, visual integration, and memory (Bhavnani et al.,
2019). At the beginning of each game, the assessor delivers verbal
instructions during a demo-mode, where the child is taught how
to play the games and allowed to practice, with help from the
assessor if required. In cases where children are not able to follow
verbal instructions or imitate the tap or drag movements of the
assessor on the tablet, the assessor holds the child’s index finger
to guide him/her on how to make the appropriate gesture (tap or
drag) in order to play the game. The assessor is taught to proceed
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to play mode if the child can play correctly without assistance
from the assessor (during the demo mode). Child performance
is only recorded in the backend during the play-mode.

Anthropometry
The assessors used World Health Organization (WHO) protocols
(WHO, 2012) to measure a child’s height and weight and Centers
for Disease Control and Prevention (CDC) protocol to measure
head-circumference using the Seca 213 Portable Stadiometer,
SECA-384 electronic scale, and Seca 201 Mechanical measuring
tape respectively. Stunting and underweight were defined as
two standard deviations below the age-adjusted median values
of height and weight respectively as per WHO standards. All
children whose anthropometric measurements were below three
standard deviations of WHO age-adjusted median values were
referred for follow-up assessments.

Data Analysis
Outcome Variable
The raw BSID-III score of the cognitive subscale, treated as a
continuous variable and henceforth referred to as BSID-cognitive
score, was used as the outcome variable to train the machine
learning models.

Predictor Variables: Feature Set Derived From DEEP
Backend Data
Meaningful features that tap into a wide range of cognitive skills
were extracted from the DEEP backend (see Bhavnani et al., 2019)
for a description of the cognitive domains assessed by DEEP
games and Supplementary Table S1 for a description of the
types of features computed from the DEEP backend). Feature
extraction was done in consultation with experts (developmental
pediatrician, clinical psychologist, and neuroscientists) to ensure
that each feature taps into cognitive skills. For example, the
feature type “accuracy” in the game “matching shapes,” where
a child needs to drag an object to its matching shadow, taps
into multiple cognitive skills such as visual form perception,
inhibitory control, attention, planning etc., while the feature type
“latency” in the same game taps into another set of cognitive skills
such as processing speed and attention. It is important to note
that all the included features tap into multiple cognitive skills,
and likewise, each cognitive skill is assessed by multiple features
across all the nine games of DEEP.

262 features comprising the number and timestamp of correct,
incorrect and background taps and drags were extracted as raw
data (see Table 2; features from the tablet). These features were
used to compute 709 additional derived features such as accuracy,
playtime and activity (Supplementary Table S1), resulting in
a total of 971 features across nine games (Table 2). Derived
features were computed for (1) each level of a game, (2) all levels
of a game combined, and subsequently (3) for a combination
of all nine games (represented in Table 2 as “Across games”).
Missing data for each level or game that a child was unable
to attempt was replaced with meaningful values. For example,
accuracy for missed levels was assigned 0 and completion time
was assigned the maximum time allowed to complete that level
(game timer). For a complete list of assigned values, please refer
to Supplementary Table S7. Histograms were generated for each

feature to evaluate the distribution of the data. Features with
skew values > 1 or < -1 were transformed using square-root
and square functions respectively for the data to more closely
approximate a normal distribution. Highly correlated features
(Pearson’s r > 0.9) were dropped to avoid multi-collinearity while
training the models, leading to an initial set of 412 uncorrelated
features for exploratory analysis.

Since our feature set was extensive, adding interaction terms
derived from the entire dataset would have been computationally
unwieldy. Therefore, interaction terms were derived only from
a smaller subset of 20 features (Supplementary Table S2) that
were selected into the top models during an initial exploratory
ML run as two-way products and ratios of features in this subset.
Only viable (those having < 15% null values) and uncorrelated
features (those with Pearson’s r < 0.9 with the earlier feature set)
were retained, resulting in 83 interaction terms being added. One
feature was engineered using the mas-o-menos (mom) algorithm
(Zhao et al., 2014). Finally, the first 26 principle components,
which explained 70% of the variance in the dataset were added.
Therefore, the final feature set comprised 412 (initial feature
set)+ 83 (interaction terms)+ 1 (mas-o-menos)+ 26 (principle
components) = 522 features (see Table 2 for a description of
the number of features contributed by each game and additional
derivations). The dataset was scaled for all subsequent steps.

Brief Description of the Machine Learning (ML)
Algorithm
The ML analysis was run using the R statistical software
version 3.5.2 (R Core Team, 2014). The total sample of 200
children was randomly split with 70% (N = 140) contributing
to training the models (Training set), and the remaining 30%
(N = 60) being assigned to a “test set” which was kept
naïve to the training protocol and only used to determine
model performance (accuracy and generalizability) of the final
algorithm on a novel dataset.

Seven different feature selection methods were applied to
select a smaller subset (capped at 15 features per set) that
comprised the best predictors of the BSID-cognitive score
(Supplementary Table S3). These were used in combination
with five prediction functions (linear regression, random forest,
support vector machine, extreme gradient boosting, and logistic
regression) to train the ML models using a 10-fold cross-
validation (CV) approach (see Figure 1 for a schematic of the
ML approach used), repeated ten times to improve stability.
Predictions from the top 5 models, based on the highest
correlation with the BSID-cognitive score, were combined using
ensemble modeling (stacking and weighted averaging) to derive
the final prediction score for each child (henceforth referred
to as the “DEEP” score). The top five models were chosen for
ensembling since it minimized the bias-variance trade-off across
5 ML runs (Supplementary Figure S4). For a detailed description
of the individual steps used in our ML approach, please refer to
Figure 1 and Supplementary Material.

Model Performance Metrics
The primary goal of DEEP is to measure a child’s cognitive
development, hence we first focused on the accuracy of our
algorithm to predict the continuous BSID-cognitive score. The
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FIGURE 1 | Schematic of the machine learning algorithm used in this study. (A) A 10-fold cross validation (CV) approach was used. The training dataset (N = 140)
was randomly split into ten “folds.” During each CV run, data from ninefold were combined to form the training subsample while the remaining fold was used as the
holdout sample. Operations in the training sub-sample are coded in blue, and those in the holdout sample in green. The 10-fold CV was repeated 10 times for
improved stability. (B) Details of the five steps employed in each CV run while predicting a child’s cognitive score. Color coding same as in (A).

distributions of DEEP and BSID-cognitive scores in the training
and test datasets were compared by plotting histograms and
the agreement between the two scores was visualized using
Bland-Altman plots. Model performance was quantified using (1)
intra-class correlation coefficient using two-way random effects
model – ICC(2,1) – with 95% confidence interval, (2) mean
prediction error – defined as the average difference (DEEP –
BSID) between the two scores, (3) mean absolute prediction error
and (4) root-mean-squared-error (RMSE). Pearson’ correlation
coefficient (r) with 95% confidence interval was used to report
the correlation between DEEP and BSID-cognitive scores. The
strength of agreement and correlation based on ICC(2,1) and
Pearson’s r was assessed as per criteria defined in the literature
(Swinscow, 1997; Li et al., 2015).

Additionally, to determine the discriminating ability of DEEP
to identify children with poor cognitive abilities (defined here as
scores below the 25th percentile on the BSID-cognitive scale in
our sample), receiver operating characteristics (ROC) curve was
drawn. The (1) sensitivity (true positive rate), (2) specificity (true
negative rate), (3) area under the curve (AUC), and (4) accuracy
(% correct classification in the whole dataset) were tabulated for
both the training and test datasets.

Impact of Prior Exposure to Digital Games and Fine
Motor Skills on DEEP Predictions
Our data indicated that no child in our sample had ever played
games or interacted with tablet computers before our visit,

but 57% (N = 113) of them had experience playing games on
a smartphone. We hypothesized that children experienced in
playing games on touchscreen devices would perform better
on the DEEP assessment, which could bias DEEP’s accuracy
in predicting a child’s BSID-cognitive score. We tested our
hypothesis by comparing the prediction errors for these two
groups of children. The significance of the difference in means
was tested using Student’s unpaired t-test with equal variance at
the α = 0.05 level.

We also hypothesized that children with better fine motor
skills (as measured by the fine-motor subscale of the BSID-
III) would perform better on DEEP given the requirement of
hand-eye coordination and the use of drag-and drop gestures.
We tested this by plotting the prediction errors against the
BSID-III fine motor domain scores and determined the strength
of the correlation using Pearson’s r (with 95% confidence
interval). Additionally, to determine the proportion of variance
of children’s fine motor skills that was explained by DEEP’s
prediction errors, the R2-value was examined.

RESULTS

Description of Study Participants
The socio-demographic and developmental profile of the study
participants is summarized in Table 1, stratified by their presence
in the training or test datasets. No significant differences
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TABLE 1 | Socio-demographic and developmental profile of study participants.

Study participant profile Training set (N = 140) Test set (N = 60) p-value$

Mean age in months (SD) 37.25 (0.86) 37.47 (0.68) 0.06

% Male 48.57 48.33 0.98

Mean height in cm (95% CI) 90.23 (83.07–97.38) 90.47 (83.14–97.79) 0.67

Stunting (%)# 31.65 30 0.84

Mean weight in kg (95% CI) 11.87 (9.10–14.65) 11.97 (9.10–14.84) 0.67

Underweight (%)# 28.57 26.67 0.78

Mean head circumference in cm (95% CI) 47.51 (43.87–51.15) 47.54 (44.84–50.23) 0.91

Preschool enrollment (%)

Not attending 47.14 60 0.06

Private 31.43 31.67

Anganwadi centers* 21.43 8.33

Mean BSID-III cognitive composite score (95% CI) 89.29 (70.02–108.55) 89.00 (72.19–105.81) 0.84

Mean BSID-III motor composite score (95% CI) 104.47 (79.01–129.93) 101.67 (77.46–125.87) 0.15

Mean BSID-III language composite score (95% CI) 97.72 (78.67–116.77) 96.57 (76.27–116.86) 0.46

#Stunting and underweight have been defined as per World Health Organization benchmarks of measures below two standard deviations of the median Height for Age
z-score (HAZ) and Weight for Age z-score (WAZ) respectively. *Government preschools in India. $p-value is based on the X2 test for differences in proportions among
categorical variables tabulated against presence in the training or test datasets, or based on Students’ t-test for continuous variables.

were observed for any of the measures between the two
groups. Although not statistically significant, a higher proportion
of children in the training dataset attended government
preschools – the Anganwadi centers in India. A third of the
children were stunted and over a quarter were underweight as per
WHO norms. Since children in our sample were spread across
three age brackets as per the BSID-III manual, the age-adjusted
composite scores in the cognitive, motor and language sub-scales
are reported to summarize the developmental attainment level
of this sample. The mean BSID-III cognitive composite score
(US standardized norms) in the training dataset was 89.29 [95%
CI: 70.02–108.55] which matched closely with the test set (89.00
[95% CI: 72.19 -105.81]). The mean BSID-III motor and language
composite scores were also comparable across both the groups,
indicating that the overall developmental status of the two groups
of children were similar.

Predicting the BSID-III Cognitive Score
Using Backend Data From DEEP
Pattern of Incomplete Gameplays on DEEP
Once children engaged with the first few games, they generally
went on to attempt all the other games. Of the 200 children, 95.5%
attempted all nine games and only 4.5% were incomplete (did not
attempt at least one game). Only two children did not attempt five
or more games. These two children were also the lowest BSID-
III scorers in the cohort and both received referrals for further
developmental evaluations based on their BSID-III performance.

Models Used to Predict the DEEP Score
The top five models (defined here as those generating predictions
with the highest correlations with BSID-cognitive scores) selected
during each run of the cross-validation folds were tabulated in a
frequency table to record the best performing models across ten
repeats of 10-fold CV. The prediction functions most commonly
selected to predict the BSID-cognitive score from the DEEP
metrics were extreme gradient boosting (XGBoost) and support

vector machine (Supplementary Table S4). The DEEP score
for each child was derived by weighted averaging of the three
stacked predictions using a weighting scheme of 0.25, 0.25, and
0.50 for linear regression, random forest and XGBoost stacking
functions respectively (see Figure 1, Supplementary Figure S5,
and Supplementary Table S5).

Of the 522 features that computationally described children’s
performance on DEEP (Table 2), 31 unique features were
selected in the final model (Table 3). Except for one feature
that was directly extracted from the DEEP backend (latency
in level 1 of matching shapes), all other features were higher
order derivations of the raw data (n = 30; examples include
accuracy, activity, interaction terms and mas-o-menos; Table 3).
Eight out of the 11 types of features computed from the DEEP
backend (Supplementary Table S1) were represented in the
final feature set.

Features from two games (matching shapes and jigsaw)
dominated, contributing 26 of 31 (83.8%) features in the final
feature set, individually or as one of the features used to compute
interaction terms (Table 3). 12 of 31 (32.4%) features represented
all nine games, including the total time taken to complete the
full suite of games and sum of levels played across all games,
implicating that the final feature set taps into a wide range of
cognitive skills as assessed by all the DEEP games. The feature
generated using the mas-o-menos algorithm was also selected
into the final model.

Agreement Between DEEP and BSID-Cognitive
Scores
Our ML algorithm could generate predictions for 195/200
children across the training and test datasets, since five children
did not play one or more games that contributed features to the
final prediction algorithm. Of these five children, three received
a referral for developmental delay based on their low BSID-
III scores. We observed moderate positive correlation and good
agreement between DEEP and BSID-cognitive scores (Pearson’s
correlation coefficient = 0.67, and ICC(2,1) ≥ 0.60 in both
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TABLE 2 | Feature set extracted from the DEEP backend metrics and selected in the final model.

Game Features from the tablet Derived features Total Feature set used for ML modeling# Selected in final model

Single tap 3 6 9 4 –

Alternate tap 4 12 16 8 –

Popping Balloons 6 30 36 11 –

Grow your garden 30 90 120 40 –

Hidden objects 37 119 156 86 –

Odd one out 74 166 240 105 –

Matching shapes 27 59 86 13 1

Jigsaw puzzles 32 66 98 24 3

Location recall 49 131 180 111 –

Across games 0 30 30 10 4

Interaction terms$ – – – 83 22

Principle components* – – – 26 –

Mas-o-menos – – – 1 1

Total 262 709 971 522 31

#Highly correlated features (Pearson’s r > 0.9) were dropped to avoid multicollinearity during modeling, resulting in 522 features being used for training the machine
learning models from the initial set of 971 features. $ Interaction terms were generated by computing products and ratios of a subset of the features selected from the
initial exploratory analysis (see Supplementary Table S2). *26 principle components explained 70% of the variance in the dataset.

the training and test datasets, Table 4 and Figures 2A,B). The
mean and standard deviation (in parentheses) of the absolute
prediction error was 2.87 (2.36) and 2.88 (2.21) for the training
and test datasets respectively (see Table 4 for a comprehensive
list of other model performance metrics). There were only two
children for whom the prediction error was more than 10 points.
Interestingly, these children were the top two BSID scorers and
constitutes the group least at risk of developmental impairments.
Importantly, model performance of the training and test datasets
were highly comparable, indicating high generalizability of our
model to novel datasets.

Although the mean prediction error was low, we observed
that DEEP tended to overestimate low BSID scores and
underestimated high scores (Supplementary Figure S1). We
examined if the poorer predictions at the two ends of the BSID
distribution may be due to floor or ceiling effects of the DEEP
games (low scorers unable to cross a minimum threshold and
high scorers maxing out on all levels), which may have impacted
DEEP’s ability to parse out the variation of children’s cognitive
abilities at the extremes. We plotted the number of difficulty levels
children with low (<25th percentile) and high (>90th percentile)
BSID-cognitive scores attempted on the DEEP games, with
the assumption that a lack of variability would indicate floor
and/or ceiling effects. The maximum number of levels a child
can play on DEEP is 40. Among the low BSID performers
(N = 42), only 3 (7.1%) played < 10 levels, while among the high
scorers (N = 21), 17 (80.9%) were unable to attempt all levels
(Supplementary Figure S2). Therefore, floor and ceiling effects
were not evident in our sample. Therefore, we hypothesized
that poorer predictions at the extreme ends of the BSID
distribution was due to the small sample sizes at the tails, which
negatively impact model performance (see Figures 2C,D and
Supplementary Table S6 that further illustrates the difference
in sample sizes between the extremes vs. the middle of the
BSID distribution). As a consequence, the range of DEEP

scores was lower than BSID-cognitive scores in both the
training (DEEP: 62.4–76; BSID: 57–88) and test datasets (DEEP:
61.85–76.8, BSID: 63–84, Figures 2C,D). The implications are
discussed later.

Discriminating Ability of DEEP to Identify Poor BSID
Performers
The 25th percentile BSID-cognitive score (66 in our sample)
was used as a cut-off to draw ROC curves, to examine DEEP’s
ability to identify poor BSID performers. The overall accuracy
of correct classification was 83.2% in the training set and 70.7%
in the test set. The area under the curve (AUC) for the training
and test datasets were 0.85 and 0.72 respectively (Table 4 and
Figures 2E,F). The sensitivity (true positive rate) and specificity
(true negative rate) of DEEP for the training set was 0.85 and 0.81
respectively using a cut-off score of 67.62 (which maximized the
sum of sensitivity and specificity for the training set). For the test
set, the corresponding values were 0.69 and 0.70.

Impact of Prior Smartphone Exposure and Fine Motor
Abilities on DEEP Validity
Of the 200 children in the combined dataset, 87 (43.5%)
had no prior experience of playing games on a touchscreen
device. Nonetheless, we observed no significant difference in
prediction errors (DEEP-BSID scores) between the children with
and without prior exposure (Student’s t-test p-value = 0.28,
Figure 3A). Therefore, we concluded that prior exposure did not
impact the quality of DEEP’s predictions.

Similarly, to determine the impact of fine motor skills on
prediction accuracy, we evaluated the correlation between BSID-
III fine motor score and DEEP’s prediction error. Fine motor
skills were very poorly correlated with the prediction error
(Pearson’s r = -0.25 [95% confidence interval = -0.37 to -0.11],
Figure 3B), with the scatterplot showing a random distribution
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TABLE 3 | Features selected in the final prediction model.

Sr. # Feature source Features selected in the final prediction model* Feature type# Game

1 Individual games jig_av_correctrate_sqrt Derived Jigsaw (JIG)

2 jig_l5_accuracy_cbyi_sqrt Derived

3 jig_l5_activity Derived

4 ms_l1_latency Tablet Matching shapes (MS)

5 Across games sum_all_levels_played Derived All nine games (Across games)

6 sum_completion_time Derived

7 sum_total_accuracy_cbyt Derived

8 msjig_total_incorrectdrag_sqrt, Derived MS + JIG

9 Interaction terms msjig_total_playtime_times_jig_l1_activity Derived MS + JIG

10 jig_l1_activity_times_jig_l3_accuracy_cbyi_sqrt Derived JIG

11 jig_l1_activity_times_ms_l2_correctrate_sqrt Derived MS + JIG

12 ms_av_playtime_times_jig_l1_activity Derived MS + JIG

13 ms_av_playtime_times_jig_l3_accuracy_cbyi_sqrt Derived MS + JIG

14 ms_av_playtime_times_ms_l1_accuracy_cbyi Derived MS

15 ms_l1_accuracy_cbyi_times_ms_l3_correctrate_sqrt Derived MS

16 ms_l1_activity_sqrt_div_by_sum_total_accuracy_cbyt Derived MS + Across games

17 ms_l1_activity_sqrt_times_st_correctclicks Derived MS + Single tap

18 ms_l1_correctdrags_div_by_sum_total_accuracy_cbyt Derived MS + Across games

19 ms_l1_correctdrags_times_ms_l1_totaldrags_sqrt Derived MS

20 ms_l1_correctrate_sqrt_div_by_sum_all_levels_played Derived MS + Across games

21 ms_l1_correctrate_sqrt_times_ms_l1_accuracy_cbyi Derived MS

22 ms_l1_latency_div_by_sum_all_levels_played Derived MS + Across games

23 ms_l1_latency_div_by_sum_total_accuracy_cbyt Derived MS + Across games

24 ms_l1_latency_times_ms_l1_correctdrags Derived MS

25 ms_l1_totaldrags_sqrt_times_st_correctclicks Derived MS + Single tap

26 ms_total_incorrectdrag_sqrt_times_jig_l1_activity Derived MS + JIG

27 st_correctclicks_times_sum_all_levels_played Derived Single tap + Across games

28 msjig_total_incorrectdrag_sqrt_div_by_sum_total_accuracy_cbyt Derived MS + JIG + Across games

29 msjig_total_incorrectdrag_sqrt_times_st_correctclicks Derived MS + JIG + Single tap

30 msjig_total_playtime_div_by_sum_total_accuracy_cbyt Derived MS + JIG + Across games

31 Mas-o-menos mom Derived Across games

*The prefix indicates the game that contributed the feature. Jig, jigsaw puzzles; ms, matching shapes; msjig, combination of matching shapes and jigsaw; sum, across all
nine DEEP games; st, single tap. #Tablet, extracted directly from DEEP backend; Derived, higher order derivations of tablet-derived metrics.

TABLE 4 | Model performance metrics.

Model performance metrics Training set (N = 137)& Test set (N = 58)

Pearson’s correlation coefficient 0.67 (0.57–0.76) 0.67 (0.49–0.79)

ICC(2,1) [95% CI]* 0.604 (0.49–0.70) 0.66 (0.49–0.79)

Mean absolute error (SD) 2.87 (2.36) 2.88 (2.21)

Root mean square error (SD) 3.71 (5.09) 3.62 (4.30)

Mean bias error (SD) −0.05 (3.72) 0.13 (3.65)

Receiver Operating Characteristics

Sensitivity (true positive rate) 0.846 0.692

Specificity (true negative rate) 0.810 0.697

AUC 0.849 0.721

Accuracy# (%) 83.21 70.69

&N refers to the number of children for whom DEEP predictions could be generated.
Full dataset: N = 140 (Training set) and N = 60 (Test set). *Agreement levels for
ICC(2,1): >0.6 = good. #DEEP cut-off score that optimized accuracy for correct
classification (performance above or below the 25th percentile BSID-III cognitive
score) was 67.19. The accuracy of the test set predictions was based on this cut-
off value.

around the mean. Additionally, prediction errors could only
explain 6% of the variance of fine-motor skills in our sample.

DISCUSSION

We recently reported the development and piloting of a gamified
cognitive assessment tool named DEvelopmental assessment on
an E-Platform (DEEP) (Bhavnani et al., 2019), and demonstrated
it to be feasible for delivery by non-specialists in rural Indian
households and acceptable to children and their families. In
this study we explored the potential of using a supervised
machine learning (ML) approach benchmarked to the “gold
standard” BSID-III cognitive score, to predict a child’s cognitive
development using the backend metrics of DEEP. We found that
the predicted DEEP scores were in good agreement with the
BSID-cognitive score, with satisfactory ROC metrics.

An important characteristic of our analysis was the inclusion
of a “test” dataset to evaluate the accuracy of our algorithm on
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FIGURE 2 | Correlation and distribution of DEEP and BSID-cognitive scores. The correlation between DEEP and BSID-cognitive scores (A,B), their distribution (C,D)
and the ROC curves of the training (E) and test (F) datasets is shown. Gray and purple bars represent the BSID-cognitive and DEEP scores respectively.

a novel dataset that did not contribute to training the models.
We found that model performance was comparable between the
training and test datasets, highlighting the generalizability of
our algorithm. Importantly, using a cutoff score of 67.62 that
optimized the sensitivity and specificity of DEEP for the training
set, the sensitivity of the test set was 0.692 and specificity was
0.667, underscoring the extent of DEEP’s potential in reducing
the “detection” gap in our study setting, a prime example of a
region where developmental assessments are far from routine.

Contrary to expectations, DEEP’s predictions of a child’s
BSID-cognitive score was not impacted by prior experience of
playing digital games on touch-screen devices, nor correlated
with fine motor skills, presumably due to the ease of play
engineered during DEEP’s design, as well as the addition of a
“demo” phase which allowed children to practice playing the
games before data was collected in the backend.

Two games – matching shapes and jigsaw – contributed
the bulk of the features selected in the final model, indicating
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FIGURE 3 | Impact of prior experience of playing digital games and fine motor skills on DEEP’s prediction accuracy. (A) Boxplot showing the distribution of
prediction errors (DEEP-BSID-cognitive score) for children with and without prior exposure to playing games on a smart device. Mean (dotted line) and median (solid
line) are shown. There is no significant difference in mean prediction error between the two groups. (B) Scatter plot of prediction error against fine motor score
measured by the BSID-III fine motor domain subscale.

that cognitive skills related to picture matching and completing
jigsaw puzzles are particularly suited to predicting children’s
cognitive abilities in our 3 years old, rural North-Indian
cohort, although other features representing the entirety of
the DEEP games were also selected in the final model. It
is important to note here that a few items on the BSID-III
cognitive scale for this age range also require matching by shape,
color and size, as well as completing simple jigsaw puzzles,
highlighting the clinical relevance of features selected in our
final model. Some of the cognitive abilities tested by these games
include visual form perception, visual integration, attention and
response inhibition.

Although our initial results are very encouraging, they
highlight a few limitations that need refinement in future
versions. One key limitation is the poorer prediction accuracy
at the extreme ends of the BSID-III distribution, which we
speculate may be due to the small sample size in the tails. For
example, of the 200 children in our study sample, only four
scored below 60 and five above 80 on the BSID-III cognitive
assessment. Therefore, our algorithm performed relatively poorly
in predicting these extreme scores compared to predictions
in the middle of the BSID-III distribution where the sample
size is >100. Consequently, the range of DEEP scores and
thereby its sensitivity, is lower than the BSID-III measure.
We plan to overcome this issue by enriching our sample at
both ends of the BSID-III distribution in future studies to
achieve good model performance across the whole spectrum
of BSID scores. Another limitation was the inability to predict
scores for five children (of the total sample of 200) who
did not play key games that contributed features to the
final prediction algorithm. However, it is important to note
that three of those five children received referrals for follow-
up assessments based on their poor BSID-III performance.
Therefore, the inability to engage with the DEEP games may
be an important indicator of developmental delays warranting
further evaluations. We will also follow up this hypothesis
in future studies.

Additionally, since DEEP was tested on a very homogenous
population (as evidenced in Table 1), it is likely that the
current model may perform sub-optimally in other diverse
settings and age ranges. Therefore, next steps include (1)
administering DEEP on a diverse sample across India and
abroad; (2) adding more difficulty levels to allow longitudinal
monitoring of children across the preschool years (2–6 years);
and (3) integrate other games and modes of assessments (such
as eye-tracking) to expand its functionality to assess other
developmental domains such as fine motor, social-emotional
and language. Given the power of iterative improvements that a
machine learning approach allows as more relevant data become
available to train the models, we are optimistic that our proposed
ways forward would continue to improve the accuracy and
generalizability of DEEP.

The need for ECD interventions have been emphasized in
LMICs, however, there is a paucity of validated and scalable
direct child measures for evaluating the outcomes of these
interventions. While stunting may currently be the best proxy
measure for human, social and economic capital (Hoddinott
et al., 2013), it may be too distal a measure to detect
improvements in cognitive abilities, especially if the intervention
is unrelated to nutrition (e.g., – parenting support programs
improve cognitive development, but have no impact on child
growth) (Britto et al., 2017). Given the granularity of the data
captured by DEEP, it could provide a possible solution once it
has been tested for its sensitivity to detect neurodevelopmental
changes brought about by ECD interventions.

Machine learning approaches which allow for the analysis
of all available data in an unbiased manner have the potential
to identify novel biomarkers of child development. Integral
to using the ML approach is feature engineering, which
creates complex combinations of available features to improve
predictions. In the case of DEEP, the superior predictive
capacities of engineered features are demonstrated through the
fact that the majority of features selected in our final model
are “interaction terms,” and one derived using the mas-o-menos
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algorithm, all of which constitute novel biomarkers of cognitive
development in our cohort.

CONCLUSION

In conclusion, it is essential to set up mechanisms wherein
children undergo regular monitoring to ensure that they are
developing optimally, and refer those who are faltering to
effective interventions. In low resource settings, where more
than 40% of the children are at risk of not achieving their
developmental potential, the absence of scalable assessment
tools that can be used by frontline health workers leads
to a large detection gap. DEEP, an acceptable and feasible
gamified digital tool for assessment of cognitive development
(Bhavnani et al., 2019), has now been demonstrated to accurately
predict a child’s cognitive development. Leveraging the power
of machine learning analytics, we plan to iteratively improve
DEEP’s predictions by continuing to collect large samples of
diverse data across settings, populations and age groups, as well
as study its sensitivity to measure change brought about by
ECD interventions. Through these efforts, we hope to create
a tool to longitudinally track cognitive development across the
preschool years, analogous to the WHO growth standards that
monitor physical growth in children, as well as contribute to the
dimensional assessment of cognitive development in the early
years, aligned with the principles of the Research Domain Criteria
(RDoC) framework.
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